Glättung mit exponentiell gewichteten Bewegungsdurchschnitten Ein gleitender Durchschnitt nimmt eine laute Zeitreihe und ersetzt jeden Wert mit dem Mittelwert einer Nachbarschaft um den gegebenen Wert. Diese Nachbarschaft kann aus rein historischen Daten bestehen, oder sie kann sich auf den gegebenen Wert konzentrieren. Darüber hinaus können die Werte in der Nachbarschaft mit verschiedenen Sätzen von Gewichten gewichtet werden. Hier ist ein Beispiel für einen gleich gewichteten Dreipunkt gleitenden Durchschnitt, mit historischen Daten, Hier repräsentiert das geglättete Signal und stellt die lauten Zeitreihen dar. Im Gegensatz zu einfachen gleitenden Durchschnitten passt ein exponentiell gewichteter gleitender Durchschnitt (EWMA) einen Wert entsprechend einer exponentiell gewichteten Summe aller bisherigen Werte an. Dies ist die Grundidee, das ist schön, weil du dich nicht darum kümmern musst, ein Dreipunktfenster zu haben, gegen ein Fünfpunktfenster oder Sorge um die Angemessenheit deines Gewichtungsschemas. Mit dem EWMA wurden die vorherigen Störungen, 8221 und 8220 vergessen, 8221 durch den Begriff in der letzten Gleichung, während bei einem Fenster oder einer Nachbarschaft mit diskreten Grenzen eine Störung vergessen wird, sobald sie aus dem Fenster herauskommt. Mittelung der EWMA, um Trends zu finden Nach dem Lesen über EWMAs in einem Datenanalyse-Buch, war ich glücklich mit diesem Tool auf jede einzelne Glättungsanwendung, die ich stieß, gegangen. Erst später erfuhr ich, dass die EWMA-Funktion wirklich nur für stationäre Daten geeignet ist, d. H. Daten ohne Trends oder Saisonalität. Insbesondere widersteht die EWMA-Funktion den Trends weg von der aktuellen Bedeutung, dass es8217s bereits 8220seen8221 ist. Also, wenn du eine laute Hut-Funktion hast, die von 0 auf 1 und dann wieder auf 0 geht, dann gibt die EWMA-Funktion auf der Hügel-Seite niedrige Werte und hohe Werte auf der Down-Hills-Seite zurück. Eine Möglichkeit, dies zu umgehen, ist, das Signal in beide Richtungen zu glätten, nach vorne zu marschieren und dann rückwärts zu marschieren und dann die beiden zu mitteln. Hier werden wir die EWMA-Funktion des Pandas-Moduls nutzen. Holt-Winters Zweite Ordnung EWMA Und hier ist ein Python-Code, der die Holt-Winters zweiter Ordnung auf eine andere laute Hutfunktion implementiert, wie zuvor. Post-Navigation Aktuelle Beiträge7.3.7 Exponentiell gewichteter Moving Average (EWMA) 7.3.7 Exponentiell gewichteter Moving Average Um die Annahmen einer einheitlich gewichteten gleitenden durchschnittlichen (UWMA) Schätzung mit den Realitäten der Markt-Heteroskedastizität in Einklang zu bringen, können wir nur die jüngsten Schätzer 7.10 anwenden Historische Daten tq. Die sich am ehesten auf die aktuellen Marktbedingungen auswirken sollte. Dies geschieht selbstsüchtig, da der Schätzer 7.10 auf eine kleine Menge an Daten seinen Standardfehler erhöhen wird. Infolgedessen führt UWMA ein Dilemma ein: das Anwenden auf eine Menge von Daten ist schlecht, aber so wird es auf ein wenig Daten anwenden. Dies motivierte Zangari (1994), eine Modifikation von UWMA vorzuschlagen, die als exponentiell gewichtete gleitende durchschnittliche (EWMA) Schätzung bezeichnet wird.2 Dies gilt für eine ungleichmäßige Gewichtung auf Zeitreihendaten, so dass viele Daten verwendet werden können, aber die jüngsten Daten werden stärker gewichtet . Wie der Name schon sagt, basieren die Gewichte auf der exponentiellen Funktion. Die exponentiell gewichtete gleitende durchschnittliche Schätzung ersetzt den Schätzer 7.10, wobei mit dem Zerfallsfaktor im allgemeinen ein Wert zwischen .95 und .99 zugewiesen wird. Niedrigere Abklingfaktoren neigen dazu, die jüngsten Daten stärker zu bewerten. Beachten Sie, dass exponentiell gewichtete gleitende durchschnittliche Schätzung weit verbreitet ist, aber es ist eine bescheidene Verbesserung gegenüber UWMA. Es versucht nicht, die Marktbedingte Heteroskedastizität zu modellieren, als UWMA. Sein Gewichtungsschema ersetzt das Dilemma, wie viel Daten mit einem ähnlichen Dilemma zu verwenden, wie aggressiv ein Zerfall Faktor zu verwenden. Betrachten wir wieder ausstellen 7.6 und unser Beispiel für die USD 10MM Position ist SGD. Ermöglicht die Schätzung von 10 1 mit exponentiell gewichtetem gleitendem Durchschnittsschätzer 7.20. Wenn wir .99 verwenden, erhalten wir eine Schätzung für 10 1 von .0054. Wenn wir .95 verwenden, erhalten wir eine Schätzung von .0067. Diese entsprechen den Value-at-Risk-Ergebnissen von USD 89.000 bzw. USD 110.000. Ausstellung 7.7 gibt 30 Tage Daten für 1 Monat CHF Libor an. Ausstellung 7.7: Daten für 1 Monat CHF Libor. Die Preise werden als Prozentsätze ausgedrückt. Quelle: British Bankers Association (BBA).Exponential Moving Average - EMA BREAKING DOWN Exponential Moving Average - EMA Die 12- und 26-Tage-EMAs sind die beliebtesten Kurzzeitdurchschnitte und sie werden verwendet, um Indikatoren wie die gleitende durchschnittliche Konvergenz zu schaffen Divergenz (MACD) und dem prozentualen Preisoszillator (PPO). Im Allgemeinen werden die 50- und 200-Tage-EMAs als Signale von Langzeittrends verwendet. Händler, die technische Analysen verwenden, finden bewegte Durchschnitte sehr nützlich und aufschlussreich, wenn sie richtig angewendet werden, aber schaffen Verwüstung, wenn sie unsachgemäß verwendet oder falsch interpretiert werden. Alle gleitenden Mittelwerte, die üblicherweise in der technischen Analyse verwendet werden, sind ihrer Natur nach hintere Indikatoren. Folglich sollten die Schlussfolgerungen, die aus der Anwendung eines gleitenden Durchschnitts auf eine bestimmte Marktkarte gezogen werden, darin bestehen, eine Marktbewegung zu bestätigen oder ihre Stärke anzugeben. Sehr oft, bis zu der Zeit, in der eine gleitende durchschnittliche Indikatorlinie eine Änderung vorgenommen hat, um einen bedeutenden Marktzugang zu reflektieren, ist der optimale Markteintritt bereits vergangen. Eine EMA dient dazu, dieses Dilemma zu einem gewissen Grad zu lindern. Weil die EMA-Berechnung mehr Gewicht auf die neuesten Daten setzt, umarmt sie die Preisaktion etwas fester und reagiert daher schneller. Dies ist wünschenswert, wenn eine EMA verwendet wird, um ein Handelseingangssignal abzuleiten. Interpretation der EMA Wie alle gleitenden durchschnittlichen Indikatoren sind sie für die Trends in den Märkten besser geeignet. Wenn der Markt in einem starken und anhaltenden Aufwärtstrend ist. Die EMA-Indikatorlinie zeigt auch einen Aufwärtstrend und umgekehrt für einen Down-Trend. Ein wachsamer Trader wird nicht nur auf die Richtung der EMA-Linie achten, sondern auch auf das Verhältnis der Änderungsrate von einem Bar zum nächsten. Zum Beispiel, da die Preiswirkung eines starken Aufwärtstrends beginnt zu glätten und umzukehren, beginnt die EMAs-Änderungsrate von einem Bar zum nächsten zu verkleinern, bis zu diesem Zeitpunkt die Indikatorlinie abflacht und die Änderungsrate Null ist. Wegen der nacheilenden Wirkung, bis zu diesem Punkt, oder sogar ein paar Takte vorher, sollte die Preisaktion bereits umgekehrt sein. Daraus folgt, dass die Beobachtung einer konsequenten Abnahme der Änderungsrate der EMA selbst als Indikator verwendet werden könnte, der dem Dilemma, das durch die nacheilende Wirkung der sich bewegenden Mittelwerte verursacht wurde, weiter entgegenwirken könnte. Gemeinsame Verwendungen der EMA EMAs werden häufig in Verbindung mit anderen Indikatoren verwendet, um signifikante Marktbewegungen zu bestätigen und ihre Gültigkeit zu beurteilen. Für Händler, die intraday und schnell bewegte Märkte handeln, ist die EMA mehr anwendbar. Häufig verwenden Händler EMAs, um eine Handelsvorspannung zu bestimmen. Zum Beispiel, wenn ein EMA auf einer Tages-Chart zeigt einen starken Aufwärtstrend, eine Intraday-Trader-Strategie kann nur von der langen Seite auf einem Intraday-Chart zu handeln. Exploring Die exponentiell gewichtete Moving Average Volatilität ist die häufigste Maßnahme Risiko, aber Es kommt in verschiedenen Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, siehe Volatilität verwenden, um zukünftiges Risiko zu beurteilen.) Wir haben Googles aktuelle Aktienkursdaten verwendet, um die tägliche Volatilität auf der Grundlage von 30 Tagen Lagerbestand zu berechnen. In diesem Artikel werden wir die einfache Volatilität verbessern und den exponentiell gewichteten gleitenden Durchschnitt (EWMA) diskutieren. Historische Vs. Implizite Volatilität Zuerst können wir diese Metrik in ein bisschen Perspektive bringen. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit Prolog ist, messen wir die Geschichte in der Hoffnung, dass es prädiktiv ist. Implizite Volatilität hingegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Lesung siehe die Verwendungen und Grenzen der Volatilität.) Wenn wir uns nur auf die drei historischen Ansätze konzentrieren (links oben), haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Bewerben Sie ein Gewichtungsschema Zuerst haben wir Berechnen Sie die periodische Rückkehr. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rückkehr in kontinuierlich zusammengesetzten Begriffen ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. h. der Preis heute geteilt durch den Preis gestern und so weiter). Dies führt zu einer Reihe von täglichen Renditen, von u i zu u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. In dem vorherigen Artikel (mit Volatility To Gauge Future Risk), haben wir gezeigt, dass unter ein paar akzeptablen Vereinfachungen, die einfache Varianz ist der Durchschnitt der quadrierten Renditen: Beachten Sie, dass dies summiert jede der periodischen Renditen, dann teilt diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, es ist wirklich nur ein Durchschnitt der quadratischen periodischen Rückkehr. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor ist (speziell 1 m), dann sieht eine einfache Varianz so aus: Die EWMA verbessert sich auf einfache Abweichung Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Gestern (sehr neuere) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch die Verwendung des exponentiell gewichteten gleitenden Durchschnitts (EWMA) behoben, bei dem neuere Renditen ein größeres Gewicht auf die Varianz haben. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Der als Glättungsparameter bezeichnet wird. Lambda muss kleiner als eins sein. Unter dieser Bedingung wird anstelle von gleichen Gewichten jede quadrierte Rendite mit einem Multiplikator wie folgt gewichtet: Zum Beispiel neigt RiskMetrics TM, ein Finanzrisikomanagement-Unternehmen, dazu, ein Lambda von 0,94 oder 94 zu verwenden. In diesem Fall ist das erste ( (1 - 0,94) (94) 0 6. Die nächste quadratische Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von Exponential in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muss) des vorherigen Tagegewichts. Dies stellt eine Varianz sicher, die gewichtet oder voreingenommen auf neuere Daten ist. (Um mehr zu erfahren, schau dir das Excel-Arbeitsblatt für Googles-Volatilität an.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google ist unten dargestellt. Die einfache Volatilität wirkt effektiv jede periodische Rendite um 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Kursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass Spalte P ein Gewicht von 6, dann 5.64, dann 5.3 und so weiter zuteilt. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die ganze Serie (in Spalte Q) zusammengefasst haben, haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und EWMA im Googles-Fall Sein signifikant: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (siehe die Kalkulationstabelle für Details). Anscheinend hat sich die Googles-Volatilität in jüngster Zeit niedergelassen, eine einfache Varianz könnte künstlich hoch sein. Heutige Varianz ist eine Funktion von Pior Days Variance Youll bemerken wir brauchten, um eine lange Reihe von exponentiell abnehmenden Gewichten zu berechnen. Wir werden die Mathematik hier nicht machen, aber eines der besten Features der EWMA ist, dass die ganze Serie bequem auf eine rekursive Formel reduziert: Rekursive bedeutet, dass heutige Varianzreferenzen (d. h. eine Funktion der vorherigen Tagesabweichung) ist. Sie finden diese Formel auch in der Kalkulationstabelle, und sie erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der vulkanischen Varianz (gewichtet durch Lambda) plus gestern quadrierte Rückkehr (gewogen von einem Minus Lambda). Beachten Sie, wie wir nur zwei Begriffe zusammenfügen: gestern gewichtete Varianz und gestern gewichtet, quadratische Rückkehr. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. RiskMetrics 94) zeigt einen langsamen Abfall in der Serie an - in relativer Hinsicht werden wir mehr Datenpunkte in der Serie haben und sie werden langsamer abfallen. Auf der anderen Seite, wenn wir das Lambda reduzieren, zeigen wir einen höheren Zerfall an: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, also kannst du mit seiner Empfindlichkeit experimentieren). Zusammenfassung Volatilität ist die momentane Standardabweichung eines Bestandes und die häufigste Risikometrität. Es ist auch die Quadratwurzel der Varianz. Wir können die Abweichung historisch oder implizit (implizite Volatilität) messen. Wenn man historisch misst, ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Abweichung ist, dass alle Renditen das gleiche Gewicht bekommen. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch die Zuordnung von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße verwenden, aber auch ein größeres Gewicht auf neuere Renditen geben. (Um ein Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionische Schildkröte.) Beta ist ein Maß für die Volatilität oder das systematische Risiko eines Wertpapiers oder eines Portfolios im Vergleich zum Markt als Ganzes. Eine Art von Steuern, die auf Kapitalgewinne von Einzelpersonen und Kapitalgesellschaften angefallen sind. Kapitalgewinne sind die Gewinne, die ein Investor ist. Ein Auftrag, eine Sicherheit bei oder unter einem bestimmten Preis zu erwerben. Ein Kauflimitauftrag erlaubt es Händlern und Anlegern zu spezifizieren. Eine IRS-Regel (Internal Revenue Service), die strafrechtliche Abhebungen von einem IRA-Konto ermöglicht. Die Regel verlangt das. Der erste Verkauf von Aktien von einem privaten Unternehmen an die Öffentlichkeit. IPOs werden oft von kleineren, jüngeren Unternehmen ausgesucht. DebtEquity Ratio ist Schuldenquote verwendet, um eine company039s finanzielle Hebelwirkung oder eine Schuldenquote zu messen, um eine Person zu messen.
No comments:
Post a Comment